Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation.
نویسندگان
چکیده
Osteocytes are the most abundant cells in bone and are ideally located to influence bone turnover through their syncytial relationship with surface bone cells. Osteocyte-derived signals have remained largely enigmatic, but it was recently reported that human osteocytes secrete sclerostin, an inhibitor of bone formation. Absent sclerostin protein results in the high bone mass clinical disorder sclerosteosis. Here we report that within adult iliac bone, newly embedded osteocytes were negative for sclerostin staining but became positive at or after primary mineralization. The majority of mature osteocytes in mineralized cortical and cancellous bone was positive for sclerostin with diffuse staining along dendrites in the osteocyte canaliculi. These findings provide for the first time in vivo evidence to support the concept that osteocytes secrete sclerostin after they become embedded in a mineralized matrix to limit further bone formation by osteoblasts. Sclerostin did not appear to influence the formation of osteocytes. We propose that sclerostin production by osteocytes may regulate the linear extent of formation and the induction or maintenance of a lining cell phenotype on bone surfaces. In doing so, sclerostin may act as a key inhibitory signal governing skeletal microarchitecture.
منابع مشابه
A sclerostin antibody enhances metaphyseal bone healing in rats
Introduction: Most fractures occur in osteoporotic cancellous bone in metaphyseal regions. The response to the trauma of inserting a screw in cancellous bone appears similar to metaphyseal fracture repair. The formation of new bone around a screw determines the strength of its fixation. Hence, the bone regenerative response can be measured as a pull-out force. Sclerostin, a secreted glycoprotei...
متن کاملA sclerostin-based theory for strain-induced bone formation.
Bone formation responds to mechanical loading, which is believed to be mediated by osteocytes. Previous theories assumed that loading stimulates osteocytes to secrete signals that stimulate bone formation. In computer simulations this 'stimulatory' theory successfully produced load-aligned trabecular structures. In recent years, however, it was discovered that osteocytes inhibit bone formation ...
متن کاملSclerostin Is an Osteocyte-expressed Negative Regulator of Bone Formation, But Not a Classical BMP Antagonist
Sclerosteosis, a skeletal disorder characterized by high bone mass due to increased osteoblast activity, is caused by loss of the SOST gene product, sclerostin. The localization in bone and the mechanism of action of sclerostin are not yet known, but it has been hypothesized that it may act as a bone morphogenetic protein (BMP) antagonist. We show here that SOST/sclerostin is expressed exclusiv...
متن کاملSclerostin and Bone Aging: A Mini-Review.
Sclerostin, mainly produced by osteocytes, is now considered a major regulator of bone formation. Identified from patients with a low bone mass, sclerostin inhibits the Wnt pathway by binding to LRP5/6 and subsequently increases bone formation. Sclerostin may also play a role in the mediation of systemic and local factors such as calcitriol, PTH, glucocorticoids and tumor necrosis factor-alpha....
متن کاملSclerostin blood levels before and after kidney transplantation.
BACKGROUND/AIMS Sclerostin is secreted by osteocytes. As a circulating inhibitor of the Wnt-signaling pathway it inhibits bone formation and contributes to the development of osteoporosis. Sclerostin levels are elevated in patients with chronic kidney disease and end-stage renal disease. Since data for patients after kidney transplantation are scarce, we have prospectively measured sclerostin l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 19 13 شماره
صفحات -
تاریخ انتشار 2005